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Abstract We classify in this paper different augmented Lagrangian functions into three
unified classes. Based on two unified formulations, we construct, respectively, two convergent
augmented Lagrangian methods that do not require the global solvability of the Lagrangian
relaxation and whose global convergence properties do not require the boundedness of the
multiplier sequence and any constraint qualification. In particular, when the sequence of
iteration points does not converge, we give a sufficient and necessary condition for the
convergence of the objective value of the iteration points. We further derive two multiplier
algorithms which require the same convergence condition and possess the same properties as
the proposed convergent augmented Lagrangian methods. The existence of a global saddle
point is crucial to guarantee the success of a dual search. We generalize in the second half
of this paper the existence theorems for a global saddle point in the literature under the
framework of the unified classes of augmented Lagrangian functions.

Keywords Augmented Lagrangian function · Duality theory · Global convergence ·
Global optimization · Nonconvex optimization · Nonlinear programming · Saddle point

1 Introduction

We consider in this paper the following inequality constrained global optimization problem:

(P) min f (x)

s. t. gi (x) ≤ 0, i = 1, . . . ,m,
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where x ∈ R
n and f and gi , i = 1, . . . ,m, are all continuously differentiable functions on

R
n . Denote X∗ as the set of the optimal solutions to problem (P).

The Lagrangian function of (P) is defined as follows for λ = (λ1, . . . , λm)
T ≥ 0,

L(x, λ) = f (x)+
n∑

i=1

λi gi (x),

while the dual function of (P) is given by

d(λ) = min
x∈Rn

L(x, λ).

The Lagrangian dual problem of (P) is then to search for a multiplier vector λ∗ ∈ R
m+

that maximizes d(λ) for all λ ∈ R
m+:

(D) max
λ∈R

m+
d(λ).

The classical Lagrangian method based on the above dual formulation has been success-
fully applied to convex optimization as the zero duality gap can be achieved between the
primal problem (P) and the dual problem (D). However, in nonconvex situations, nonzero
duality gap often exists. Thus, the classical Lagrangian method may fail to identify the
global optimal solution of problem (P) via the dual search. Augmented Lagrangian meth-
ods have been developed to remedy the notorious problem of nonzero duality gap. The
first augmented Lagrangian method was independently proposed by Hestenes [10] and
Powell [24] for equality-constrained problems by incorporating a quadratic penalty term
in the conventional Lagrangian function. This method avoids the ill-conditional behavior
and slow convergence of the early penalty methods. However, no convergence properties
were presented for this method. The method by Hestenes [10] and Powell [24] was then ex-
tended to inequality constrained convex optimization problems by Bertsekas [2] with a proof
of its global convergence. Rockafellar [25,26] proposed essentially-quadratic augmented
Lagrangian method and proved its global convergence for nonconvex optimization problems.
However, these augmented Lagrangian functions in [25,26] are not twice continuously differ-
entiable with respect to x , thus preventing the use of Newton-type methods for solving their
corresponding unconstrained Lagrangian relaxation problems. Exponential-type augmented
Lagrangian functions overcome this weakness, as they are twice continuously differentiable
with respect to x (see [2,13,33]). To avoid the difficulties arising in the convergence analy-
sis and the ill-conditional numerical behavior of the exponential-type Lagrangian methods,
exponential-type penalty function (see [2,18,33]) and modified barrier function (see [19])
were developed. Promising numerical computation results of the modified barrier function
were reported in [1,21].

The convergence properties of augmented Lagrangian methods have been studied for
decades. Local convergence properties have been analyzed in [7,8,12,17–19], while global
convergence of convex optimization has been analyzed in [2,9,22,23,27,33]. Global conver-
gence properties for nonconvex optimization problems have been analyzed in [3,20,25,26].
However, the convergence analysis of the above methods requires an essential assumption,
namely, the boundedness of the multiplier sequence or certain constraint qualifications for
the primal problem, such as the linear independence constraint qualification or Mangasarian-
Fromoritz constraint qualification, which are sufficient conditions for the boundedness of
the multiplier sequence. This assumption confines applications of augmented Lagrangian
methods. The first research objective of this paper is to remove this restrictive condition.

123



J Glob Optim (2009) 44:433–458 435

On the other hand, the duality and exact penalty properties of many augmented Lagrangian
and nonlinear Lagrangian have been studied in [4–6,11,12,14,16,30,31,35,36]. The exis-
tence of a saddle point of augmented Lagrangian functions plays a crucial role in ensuring a
success of the Lagrangian dual methods. The existence of the global saddle point of p-power
Lagrangian functions for inequality constrained nonconvex problems has been analyzed in
[13–15]. The existence of a local saddle point of modified barrier Lagrangian functions and
essentially-quadratic augmented Lagrangians has been studied in [19,28,29]. Rockafellar
[26] has presented an existence theorem of a global saddle point for essentially quadratic
augmented Lagrangian under second order sufficient condition and the assumption of the
uniqueness of the optimal solution. Recently, Sun et al [32] have considered four types of
augmented Lagrangian functions including two classes of augmented Lagrangian functions
in [19,28,29], and have systematically investigated the properties of local and global saddle
points. Under the second order sufficient condition and the assumption of the uniqueness of
the global optimal solution, they have proved the existence of a global saddle point for three
classes of augmented Lagrangian functions over a compact set. Using an extra separation
condition, they have further proved the existence of a global saddle point for the class of
exponential augmented Lagrangian functions. The second objective of this paper is to ex-
tend the existing results on the existence of saddle points without requiring the uniqueness
of the global optimal solution and that the feasible region of the Lagrangian relaxation be
compact.

To achieve the above two objectives, we first present in this paper three unified classes of
augmented Lagrangian functions which include six important augmented Lagrangian func-
tions in the literature as their special cases. We then develop two convergent augmented
Lagrangian methods, respectively, based on the first two unified augmented Lagrangian
functions. These two methods do not require the global solvability of the corresponding
relaxation problems. Furthermore, the global convergence of the two methods does not
require the boundedness of the multiplier sequence and other constraint qualifications of
the primal problem. In particular, when there is no limit point of the iteration points, we
establish the necessary and sufficient condition for the convergence of the sequence of the
objective value. On the other hand, we propose two multiplier algorithms based on the
proposed convergent augmented Lagrangian methods and prove the convergence of the pro-
posed multiplier algorithms using the same conditions as for the convergent augmented
Lagrangian methods. We next derive a multiplier algorithm based on the third unified class
of augmented Lagrangian functions and prove its convergence without requiring the bound-
edness of multiplier sequence and additional constraint qualification. In the second half
of the paper, we extend the existence results of the saddle points in the literature by re-
laxing the requirement of the compactness of X and the uniqueness of the global optimal
solution.

The paper is organized as follows. In Sect. 2, we present three unified classes of augmented
Lagrangian functions and their special instances. In Sect. 3, we propose two convergent aug-
mented Lagrangian methods based on the first two unified classes of augmented Lagrangian
functions, prove their global convergence properties and present the necessary and sufficient
condition under which the sequence of the objective value converges to the optimal value
of the primal problem. In Sect. 4, we derive Lagrangian multiplier algorithms, prove their
global convergence properties, and derive the necessary and sufficient condition under which
the sequence of the objective values is convergent to the optimal value. We develop next in
Sect. 5 a multiplier algorithm based on the third class of augmented Lagrangian functions
and prove its global convergence. Finally in Sect. 6, we generalize the existence results of
global saddle points in the literature.
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2 Unified formulations of augmented Lagrangian functions

We propose in this section three unified formulations of augmented Lagrangian functions
and demonstrate each unified formulation by some illustrative examples.

Denote R+ = [0,+∞), Ra = (−∞, a) for a ∈ (0,+∞], and�c(a) = {x ∈ R
n |cgi (x) <

a, 1 ≤ i ≤ m} for c > 0. Note that R∞ = R.

2.1 P-type augmented Lagrangian function

The first type of unified augmented Lagrangian functions is given as follows:

L P (x, λ, c) =
⎧
⎨

⎩
f (x)+ 1

c

m∑
i=1

P(cgi (x), λi ), x ∈ �c(a)

+∞, x /∈ �c(a)

where P(s, t) is continuous on Ra × R+ and continuously differentiable with respect to the
first variable s ∈ Ra .

We assume that function P(s, t) possesses the following properties.

(H1) P(·, t) is monotonically increasing with respect to s and satisfies:

P(0, t) = 0, ∀ t ∈ R+;
P(s, 0) ≥ 0, ∀ s ∈ Ra;

P(s, t) → +∞ (t → +∞), for s > 0.

(H2) There exists a continuous function r(t) such that

P(s, t) ≥ r(t), ∀ (s, t) ∈ Ra × R+.

(H3) If a = +∞, then P(s,t)
s → +∞(s → +∞) holds uniformly for any t ∈ R+.

(H4) P ′
s (s, t) ≤ t,∀s < 0 and P ′

s(s, t) → 0 (s → −∞) holds uniformly for any t ∈ S ⊂
R+,

where S is any bounded set.

Definition 1 The augmented Lagrangian function L P (x, λ, c)with P(s, t) satisfying (H1)−
(H4) is called P-type augmented Lagrangian.

The following examples illustrate some special cases of L P .

Example 1 Modified Courant-type augmented Lagrangian function:

L P1(x, λ, c) = f (x)+ 1

c

m∑

i=1

P1(cgi (x), λi ),

(a = +∞), where P1(s, t) = (max{0, φ1(s)+ t})2 − t2, (s, t) ∈ R × R+, and the function
φ1(·) satisfies the following conditions:

(A1) φ1(·) is a twice continuously differentiable and convex function on R;
(A2) φ1(0) = 0, φ′

1(0) = 1;
(A3) lims→−∞ φ′

1(s) > 0.

It is clear that function L P1 includes the modified Courant-type augmented Lagrangian
function, i.e. the Rockefeller’s essentially quadratic augmented Lagrangian function, as a
special case by setting φ1(s) = s (see [2,10,24,27]).
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Example 2 Essentially quadratic augmented Lagrangian function (see [32]):

L P2(x, λ, c) = f (x)+ 1

c

m∑

i=1

P2(cgi (x), λi ),

(a = +∞), where P2(s, t) = minτ≥s{tτ + φ2(τ )}, (s, t) ∈ R × R+, and the function φ2(·)
satisfies the following conditions:

(B1) φ2(·) is a twice continuously differentiable and convex function on R;
(B2) φ2(0) = 0, φ′

2(0) = 0, φ′′
2 (0) > 0;

(B3)
φ2(s)|s| → +∞, (|s| → +∞).

When setting φ2(s) = 1
2 s2, this special case of L P2 becomes the same as the special case

of L P1 by setting φ1(s) = s. Note that function L P2 is, in general, different in nature from
function L P1 .

Example 3 Exponential-type augmented Lagrangian [32]:

L P3(x, λ, c) = f (x)+ 1

c

m∑

i=1

P3(cgi (x), λi ),

(a = +∞), where P3(s, t) = tφ3(s)+ ξ(s), (s, t) ∈ R × R+, the function φ3(·) satisfies the
following conditions:

(C1) φ3(·) is a twice continuously differentiable and convex on R;
(C2) φ3(0) = 0, φ′

3(0) = 0, φ′′
3 (0) > 0;

(C3) lims→−∞ φ3(s) > −∞, lims→−∞ φ′
3(s) = 0,

and the function ξ(·) satisfies the following conditions:

(C ′
1) ξ(·) is a twice continuously differentiable convex function on R;

(C ′
2) ξ(s) = 0 for s ≤ 0 and ξ(s) > 0 for s > 0;

(C ′
3)

ξ(s)
s → +∞, (s → +∞).

Note that function L P3 is a generalization of exponential-type augmented Lagrangian
function (see [2,18,33]).

Example 4 Modified Carroll barrier-type augmented Lagrangian function (see [32]):

L P4(x, λ, c) =
⎧
⎨

⎩
f (x)+ 1

c

m∑
i=1

P4(cgi (x), λi ), x ∈ �c(1)

+∞, x /∈ �c(1)

(a = 1), where P4(s, t) = tφ4(s), (s, t) ∈ R × R+, and the function φ4(·) satisfies the
following conditions:

(D1) φ4(·) is a twice continuously differentiable and convex function on R1.
(D2) φ4(0) = 0, φ′

4(0) = 1, φ′′
4 (0) > 0.

(D3) lims→−∞ φ4(s) > −∞, lims→−∞ φ′
4(s) = 0.

Taking φ4(s) = 1
1−s − 1 in L P4 gives rise to the modified Carroll function (see [19]).
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2.2 R-type augmented lagrangian function

The second type of unified augmented Lagrangian functions is

L R(x, λ, c) =
⎧
⎨

⎩
f (x)+ 1

c

m∑
i=1

R(cgi (x), λi ), x ∈ �c(a)

+∞, x /∈ �c(a)

where R(s, t) is continuous on Ra × R+ and at least first order continuously differentiable
with respect to s ∈ Ra .

We assume that function R(s, t) possesses the following properties:

(H ′
1) is the same as (H1);

(H ′
2) For any given t ∈ R+, R(s,t)

s → 0 (s → −∞);
(H ′

3) is the same as (H3);
(H ′

4) is the same as (H4).

Definition 2 The augmented Lagrangian function L R(x, λ, c) with R(s, t) satisfying (H ′
1),

(H ′
2), (H

′
3) and (H ′

4) is called R-type augmented Lagrangian.

It is easy to check that the following example is a special case of L R .

Example 5 Modified Frish barrier augmented Lagrangian function [32]:

L R1(x, λ, c) =
⎧
⎨

⎩
f (x)+ 1

c

m∑
i=1

R1(cgi (x), λi ), x ∈ �c(1)

+∞, x /∈ �c(1)

(a = 1), where R1(s, t) = tϕ(s), (s, t) ∈ R × R+, and the function ψ(·) satisfies the
following conditions:

(E1) ϕ(·) is a twice continuously differentiable and convex function on R1;
(E2) ϕ(0) = 0, ϕ′(0) = 1, ϕ′′(0) > 0;
(E3) lims→−∞ ϕ(s)

s = 0, lims→−∞ ϕ′(s) = 0.

Let ϕ(s) = − ln(1 − s) in L R1 , we get modified Frish augmented Lagrangian function
[19].

2.3 V-type augmented lagrangian function

The third type of unified augmented Lagrangian functions is

LV (x, λ, c) =
⎧
⎨

⎩
f (x)+ 1

c

m∑
i=1

V (cgi (x), λi ), x ∈ �c(a)

+∞, x /∈ �c(a)

where V (s, t) is continuous on Ra × R+ and at least first order continuously differentiable
with respect to s ∈ Ra .

We assume that function V (s, t) possesses the following properties:

(H ′′
1 ) V (·, t) is monotonically increasing and convex in s and satisfies,

V (0, t) = 0,∀t ∈ R+; V (s, t) ≥ st,∀ (s, t) ∈ Ra × R+;
(H ′′

2 ) The same as (H2);
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(H ′′
3 ) If a = +∞, then V (s,t)

s → +∞(s → +∞) holds uniformly for any t ∈ S ⊂ R+,
where S is any closed unbounded set of R+;

(H ′′
4 ) V ′(s, t) > 0, ∀t > 0 and V ′

s (s, t) → 0 (s → −∞) holds uniformly for any t ∈ S ⊂
R+, where S is any unbounded set of R+.

Definition 3 The augmented Lagrangian function Lv(x, λ, c) with R(s, t) satisfying (H ′′
1 ),

(H ′′
2 ), (H

′′
3 ), (H

′′
4 ) is called V -type augmented Lagrangian.

We can verify that the following example is a special case of LV .

Example 6 Modified exponential augmented Lagrangian function [32]:

LV1(x, λ, c) = f (x)+ 1

c

m∑

i=1

V1(cgi (x), λi )

with (a = +∞), where V1(s, t) = tψ(s), (s, t) ∈ R × R+, and the function ψ(·) satisfies
the following conditions:

(F1) ψ(·) is a twice continuously differentiable and strictly convex function on R;
(F2) ψ(0) = 0, ψ ′(0) = 1, ψ ′′(0) > 0;
(F3) lims→+∞ ψ(s)

s = +∞, lims→−∞ ψ(s) > −∞, lims→−∞ ψ ′(s) = 0.

Taking ψ(s) = es − 1 in LV1 gives rise to the exponential augmented Lagrangian function
(see [2,13,33]).

3 Convergent augmented Lagrangian methods

Augmented Lagrangian methods are devised to eliminate the duality gap in nonconvex opti-
mization when applying the traditional Lagrangian method and, eventually, to find a global
optimal solution of (P) via globally solving a series of augmented Lagrangian relaxation
problems. Although the augmented Lagrangian relaxation problem is an unconstrained min-
imization problem, the existence of its global optimal solution, in general, cannot be guaran-
teed, since �c(a) is an open set. To cope with this circumstance, we develop in this section
two convergent augmented Lagrangian methods that only require an approximate solution
of the augmented Lagrangian relaxation in the iteration. These two convergent augmented
Lagrangian methods are, respectively, based on L P and L R , the two types of the unified aug-
mented Lagrangian functions proposed in the previous section. We will then analyze their
respective convergence properties.

The convergent augmented Lagrangian methods based on L P and L R are denoted as
P AL M and R AL M , respectively.

3.1 P AL M and its convergence

Consider the Lagrangian relaxation problem associated with the augmented Lagrangian L P ,

(L P,λ,c) min
x∈Rn

L P (x, λ, c).

Definition 4 For any given λ ≥ 0, c > 0 and ε > 0, if there exists an x(λ, c, ε) ∈ R
n such

that

L P (x(λ, c, ε), λ, c) ≤ inf
x∈Rn

L P (x, λ, c)+ ε,

then x(λ, c, ε) is said to be an ε-optimum of (L P,λ,c).
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Denote the set of all ε-optima for (L P,λ,c) by

S∗
P (λ, c, ε) = {x ∈ R

n |L P (x, λ, c) ≤ inf
x∈Rn

L P (x, λ, c)+ ε}.

when ε = 0, S∗
P (λ, c, 0) reduces to S∗

P (λ, c), the set of the optimal solutions of the La-
grangian relaxation problem (L P,λ,c).

Assumption 1 f∗ = infx∈Rn f (x) > −∞.

Note that Assumption 1 is not restrictive at all. In fact, if f∗ = −∞, we can replace f (x)
with e f (x) in problem (P).

Under Assumption 1, for any given λ ≥ 0 and c > 0, property (H2) implies

inf
x∈Rn

L P (x, λ, c) ≥ f∗ + 1

c

m∑

i=1

r(λi ).

Therefore, no matter whether a global optimal solution exists or not, under Assumption 1,
for any λ ≥ 0, c > 0 and ε > 0, S∗

p(λ, c, ε) 
= ∅ always holds. Based on this property, we
propose the following convergent augmented Lagrangian method associated with augmented
Lagrangian function L P that does not require an exact solution of (L P,λ,c).

P AL M : Given sequence {εk} with εk → 0+ (k → ∞) and sequence {λk} ⊂ Rm+ . Choose
the penalty parameter ck → 0 (k → ∞) to satisfy the following condition:

lim
k→∞

1

ck

m∑

i=1

|r(λk
i )| = 0. (1)

Find an x(λk, ck, εk) ∈ S∗
P (λ

k, ck, εk), and let xk = x(λk, ck, εk).
If the relaxation problem (L P,λ,c) is globally solvable, i.e., S∗

P (λ
k, ck) 
= ∅, then take any

x(λk, ck) ∈ S∗
P (λk, ck), and let xk = x(λk, ck).

We prove next the convergence of the sequence {xk} produced by P AL M .
Define the following for α > 0,

G(α) = {x ∈ R
n |gi (x) ≤ α, 1 ≤ i ≤ m}.

when α = 0, G(0) is the feasible set of the primal problem (P). We assume, in this paper,
that G(0) 
= ∅.

Define the perturbation function of (P) as:

β f (α) = inf{ f (x)|x ∈ G(α)}.
when α = 0, β f (0) is the optimal value of (P). It is easy to verify that β f (·) is upper
semi-continous at point 0.

Let

F(α) = {x ∈ R
n | f (x) ≤ β f (0)+ α}.

Lemma 1 For any λ ≥ 0, c > 0 and ε > 0, we have

S∗
p(λ, c, ε) ⊆ {x ∈ R

n |L P (x, λ, c) ≤ β f (0)+ ε}.
Proof when x ∈ G(0), we have the following from (H1),

P(cgi (x), λi ) ≤ 0, (1 ≤ i ≤ m). (2)
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Therefore, for any x̄ ∈ S∗
P (λ, c, ε), we have the following by (2),

L P (x̄, λ, c) ≤ inf{L P (x, λ, c)|x ∈ R
n} + ε

≤ inf{L P (x, λ, c)|x ∈ G(0)} + ε

= inf{ f (x)+ 1

c

m∑

i=1

P(cgi (x), λi )|x ∈ G(0)} + ε

≤ β f (0)+ ε.


�
Lemma 2 Suppose that Assumption 1 is satisfied. Then, for any ε > 0, there exists kε such
that

{x ∈ R
n |L P (x, λ

k, ck) ≤ β f (0)+ ε} ⊆ G(ε),

when k ≥ kε , where the selection of ck satisfies (1), the condition specified in P AL M.

Proof We prove it by contradiction. Suppose that there exist an ε0 > 0 and an infinite
subsequence N ⊆ {1, 2, . . .} such that, for k ∈ N , we have

zk ∈ {x ∈ R
n |L P (x, λk, ck) ≤ β f (0)+ ε0}, (3)

zk /∈ G(ε0). (4)

From (4), there exist an i0 ∈ {1, 2, . . . ,m} and an infinite subsequence N0 ⊆ N such that,
for k ∈ N0, we have

gi0(z
k) > ε. (5)

If a < +∞, from (4), we get zk ∈ �ck (a), i.e. gi0(z
k) < ε

ck
. Therefore, lim sup

k→∞
gi0(z

k) ≤ 0,

which is a contradiction to (5). Now, let a = +∞ and therefore, for any k ∈ N0, we get the
following from (4), (5), (H1) and (H2),

β f (0)+ ε ≥ L P (z
k, λk, ck)

= f (zk)+ 1

ck

m∑

i=1

P(ck gi (z
k), λk

i )

≥ f∗ + 1

ck
P(ck gi0(z

k), λk
i0
)+ 1

ck

∑

i 
=i0

P(ck gi (z
k), λk

i )

≥ f∗ + 1

ck
P(ckε0, λ

k
i0
)+ 1

ck

∑

i 
=i0

r(λk
i )

≥ f∗ + 1

ck
P(ckε0, λ

k
i0
)− 1

ck

m∑

i=1

|r(λk
i )|.

Taking the limit with respect to k ∈ N0 in the last inequality and using (1) and (H3) give rise
to a contradiction. 
�
Lemma 3 For any ε > 0, there exists a kε such that the following holds when k ≥ kε,

{x ∈ R
n |L P (x, λ

k, ck) ≤ β f (0)+ ε

2
} ⊆ F(ε),

where the selection of ck satisfies (1), the condition specified in P AL M.
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Proof From (1), there exists a kε such that the following holds when k ≥ kε ,

1

ck

m∑

i=1

|r(λk)| ≤ ε

2
. (6)

Therefore, for all k ≥ kε and all x̄ ∈ {x ∈ R
n |L P (x, λ, c) ≤ β f (0)+ ε

2 }, we get the following
from (6),

f (x̄) = L P (x̄, λ
k, ck)− 1

ck

m∑

i=1

P(ck gi (x̄), λ
k
i )

≤ β f (0)+ ε

2
− 1

ck

m∑

i=1

r(λk
i )

≤ β f (0)+ ε

2
+ 1

ck

m∑

i=1

|r(λk
i )

≤ β f (0)+ ε.


�
Next, we prove the global convergence theorem for P AL M .

Theorem 1 Suppose that Assumption 1 is satisfied and {xk} generated by P AL M admits
limit points.

(a) For any ε > 0, S∗
P (λ

k, ck, εk) ⊆ G(ε) ∩ F(ε) when k is large enough;
(b) For any limit point, x∗, of {xk}, x∗ ∈ X∗.

Proof (a) Since εk → 0+ (k → ∞), for any ε > 0, we have εk ≤ ε
2 when k is large

enough. Therefore, from Lemmas 1 – 3, we have the following when k is large enough,

S∗
P (λ

k, ck, εk) ⊆ S∗
P (λ

k, ck,
ε

2
)

⊆ {x ∈ R
n |L P (x, λ

k, ck) ≤ β f (0)+ ε

2
}

⊆ G(ε) ∩ F(ε).

(b) For any ε > 0, when k is large enough, we have the following from (a),

xk ∈ G(ε) ∩ F(ε). (7)

Since f and gi (1 ≤ i ≤ m) are continuous, G(ε) and F(ε) are closed sets. Therefore,
we have x∗ ∈ G(ε) ∩ F(ε) from (7). Since ε > 0 is arbitrary, we obtain x∗ ∈ G(0) and
f (x∗) ≤ β f (0), i.e., x∗ ∈ X∗. 
�

If {xk} has no limit point, i.e., {xk} is divergent (see [26]), we consider the convergence of
sequence { f (xk)}. In the following, we present the necessary and sufficient condition under
which { f (xk)} is convergent to β f (0), the optimal value of problem (P).

Theorem 2 Suppose that Assumption 1 is satisfied. Then

lim
k→∞ f (xk) = β f (0) (8)

if and only if β f (α) is lower semi-continuous at α = 0.
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Proof Sufficiency: Suppose that β f (α) is lower semi-continuous at α = 0. From Theorem
1, for any ε > 0, relation (7) holds when k is large enough. Therefore,

β f (ε) ≤ f (xk) ≤ β f (0)+ ε. (9)

Since β f (α) is lower semi-continuous at point α = 0, we get the following from (9),

β f (0) ≤ lim
ε→0+ inf β f (ε) ≤ lim

k→∞ inf f (xk)

≤ lim
k→∞ sup f (xk) ≤ β f (0).

Thus,

lim
k→∞ f (xk) = β f (0).

Necessity: We prove it by contradiction. Suppose that (8) is satisfied and there exist δ0 > 0
and ε j → 0+ ( j → ∞) such that, for any j , we have

β f (ε j ) ≤ β f (0)− δ0. (10)

By the continuity of P(·, ·) and (H1), for each k, we can get a sufficiently large jk such that

ckε jk < a and P(ckε jk , λ
k
i ) ≤ η, (1 ≤ i ≤ m). (11)

Here, η > 0 is a constant. Then, for each k, there exists zk ∈ G(ε jk ) such that

f (zk) ≤ β f (ε jk )+ δ0

2
. (12)

From (10) and (12), we obtain

f (zk) ≤ β f (0)− δ0

2
. (13)

Furthermore, we get from (11) the following for i = 1, 2, . . . ,m,

ck gi (z
k) ≤ ckε jk < a.

We can now conclude zk ∈ �c(a). We also have the following from (11), (13), (H1) and
(H2),

f (xk) = L P (x
k, λk, ck)− 1

ck

m∑

i=1

P(ck gi (x
k), λk

i )

≤ inf
x∈Rn

L P (x, λ
k, ck)+ εk − 1

ck

m∑

i=1

r(λk
i )

≤ f (zk)+ 1

ck

m∑

i=1

P(ck gi (z
k), λk

i )+ εk + 1

ck

m∑

i=1

|r(λk
i )

≤ β f (0)− 1

2
δ0 + 1

ck

m∑

i=1

P(ckεk, λ
k
i )+ εk + 1

ck

m∑

i=1

|r(λk
i )

≤ β f (0)− 1

2
δ0 + 1

ck
η + εk + 1

ck

m∑

i=1

|r(λk
i )|.
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Therefore, we get

f (xk) ≤ β f (0)− 1

2
δ0 + 1

ck
η + εk + 1

ck

m∑

i=1

|r(λk
i )|. (14)

Taking the limit in both sides of (14), we get the following from (1) and (8),

β f (0) = lim
k→∞ f (xk) ≤ β f (0)− δ0

2
,

which is a contradiction. The proof is completed. 
�
3.2 R AL M and its convergence

Consider the following relaxation problem of L R ,

(L R,λ,c) min
x∈Rn

L R(x, λ, c).

Define the set of ε-optimal solutions of (L R,λ,c) as:

S∗
R(λ, c, ε) = {x ∈ R

n |L R(x, λ, c) ≤ inf
x∈Rn

L R(x, λ, c)+ ε},
and the set of optima of (L R,λ,c) as S∗

R(λ, c).

Assumption 2 g∗ = inf x∈Rn min1≤i≤m gi (x) > −∞.

If there exists i0 such that inf
x∈Rn

gi0(x) = −∞, we can replace gi0(x) ≤ 0 with egi0 (x)−1 ≤
0 in problem (P).

Note that under Assumptions 1 and 2, we have the following using the property (H ′
1),

inf
x∈Rn

L R(x, λ, c) ≥ f∗ + 1

c

m∑

i=1

R(cg∗, λi ) > −∞, ∀ λ ≥ 0, ∀ c > 0.

Therefore, S∗
R(λ, c, ε) 
= ∅. Based on this property, we present the following convergent

augmented Lagrangian method associated with L R that does not require an exact solution of
(L R,λ,c).

R AL M : Given any parameters r ∈ (−∞, g∗), sequence {εk} with εk → 0+ (k → ∞)

and sequence {λk} ⊂ R
m+. Choose a penalty parameter ck → +∞ (k → ∞) that satisfies

the following conditions:

lim
k→∞

1

ck

m∑

i=1

R(rck, λ
k
i ) = 0. (15)

Find an x(λk, ck, εk) ∈ S∗
R(λ

k, ck, εk), and let xk = x(λk, ck, εk).

Note that we have g∗ ≤ 0 and r < 0 from G(0) 
= ∅. Therefore, from the property (H ′
2)

of R, R AL M is well-posed under Assumptions 1 and 2.
Compared with P AL M , an additional assumption, i.e., Assumption 2, is needed for

R AL M , since condition (H ′
2) is weaker than (H2). As the proof of its convergence theorem

is similar to that of P AL M , we give the following theorems of convergence results for
R AL M with their proofs omitted.

Theorem 3 Suppose that Assumptions 1 and 2 are satisfied and {xk} admits limit points.
Then
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(a) S∗
R(λ

k, ck, εk) ⊆ G(ε) ∩ F(ε) for any ε > 0 and sufficiently large k;
(b) For any limit point, x∗, of {xk}, x∗ ∈ X∗.

Theorem 4 Suppose that Assumptions 1 and 2 are satisfied. Then

lim
k→∞ f (x∗) = β f (0)

if and only if β f (α) is lower semi-continous at α = 0.

4 Multiplier algorithms based on P AL M and R AL M

In this section, we derive two augmented Lagrangian multiplier algorithms by applying,
respectively, the convergent augmented Lagrangian methods P AL M and R AL M developed
in the previous section.

Algorithm 1 (Multiplier algorithm based on P AL M): Take a parameter η ∈ (0, a).

Step 0. Select initial points x0 ∈ R
n, λ0 ≥ 0 and c0 > 0. Set k := 0

Step 1. Compute

λk+1
i = P ′

s (ck gi (x
k), λk

i ), 1 ≤ i ≤ m,

ck+1 ≥ (k + 1)max

{
1,

m∑

i=1

|r(λk+1
i )|

}
, (16)

where P ′
s is the derivative of P(s, t) with respect to its first variable s.

Step 2. Find xk+1 ∈ S∗
P (λ

k+1, ck+1).
Step 3. Set k := k + 1 and go to Step 1.

From (16) in Step 1, we can verify that the condition given in (1) is satisfied. Therefore, from
Theorems 1 and 2, we obtain the following global convergence of Algorithm 1.

Theorem 5 Suppose that Assumption 1 is satisfied. Then the sequence of iteration points,
{xk}, generated by Algorithm 1 has the following properties:

(a) If {xk} admits a limit point x∗, then x∗ ∈ X∗;
(b) limk→∞ f (xk) = β f (0) if and only if β f (α) is lower semi-continuous at α = 0.

Next, we analyze some other convergence properties of Algorithm 1. Let x∗ ∈ G(0) be a
K-T point of primal problem (P), i.e., there exists λ∗ ∈ R

m with λ∗ ≥ 0, such that

f (x∗)+
m∑

i=1
λ∗

i ∇gi (x∗) = 0, (17)

λ∗
i gi (x∗) = 0, 1 ≤ i ≤ m, (18)

where ∇gi (·) is the gradient of gi (·). Let

I (x∗) = {1 ≤ i ≤ m|gi (x
∗) = 0 }, J (x∗) = {i ∈ I (x∗)|λ∗

i > 0}.
The linear independence constraint qualification holds at x∗ if {∇gi (x∗)}i∈I (x∗) are linearly

independent, while the M-F constraint qualification holds at x∗ if there exists d ∈ R
n such

that

∇gi (x
∗)T d < 0, i ∈ I (x∗). (19)

Note that the linear independence constraint qualification implies the M-F constraint quali-
fication.
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Theorem 6 Suppose that Assumption 1 is satisfied. Then, the sequence of iteration points,
{xk}, generated by Algorithm 1 satisfies the following properties:

(a) If limk→∞ xk = x∗ and the M-F constraint qualification is satisfied at x∗, then {λk} is
bounded and any of its limit points, λ∗, is such that (x∗, λ∗) is a K-T point.

(b) If limk→∞ xk = x∗ and the linearly independent constraint qualification holds at x∗,
then

lim
k→∞ λ

k = λ∗

and (x∗, λ∗) is a K-T point.

Proof Let limk→∞ xk = x∗. Theorem 5 implies x∗ ∈ X∗. (a): When i /∈ I (x∗), we have
gi (x∗) < 0. Since xk → x∗ (k → ∞), there exist ε0 > 0 and k0 such that gi (xk) ≤ −ε0

when k ≥ k0. Therefore, when i ∈ I (x∗), we have

lim
k→∞ ck gi (x

k) = −∞. (20)

From (H4) and Step 1, we have the following when k ≥ k0,

λk+1
k = P ′

s(ck gi (x
k), λk

i ) ≤ λk
i .

We can conclude that {λk
i } is bounded when i /∈ I (x∗). From (20) and (H4),

lim
k→∞ λ

k
i = 0, (21)

when i /∈ I (x∗). Next, we prove that {λk
i } is bounded when i ∈ I (x∗). If this is not true,

there exists an infinite subsequence N ⊆ {1, 2, . . .} such that

Tk =
∑

i∈I (x∗)
λk

i → +∞, k ∈ N , k → ∞. (22)

From xk−1 ∈ S∗
P (λ

k−1, ck−1) and Step 1, we get

∇ f (xk−1)+
m∑

i=1

λk
i ∇gi (x

k−1) = 0. (23)

Without loss of generality, we may assume that
λk

i
Tk

→ λ̃∗
i , (k ∈ N , k → ∞). Dividing both

sides of (23) by Tk , taking limit with respect to k ∈ N , and using (21) and (22), we get
∑

i∈I (x∗)
λ̃∗

i ∇gi (x
∗) = 0.

As not all λ̃∗
i , i ∈ I (x∗), are zero, this leads to a contradiction to the M-F constraint qual-

ification. Therefore, {λk} is bounded. Suppose that λ∗ is a limit point of {λk}. From (21),
λ∗

i = 0 for i /∈ I (x∗), and from (23) we get

∇ f (x∗)+
∑

i∈I (x∗)
λ∗

i ∇gi (x
∗) = 0, (24)

which proves (a).
For (b), since the M-F constraint qualification is implied by linearly independent constraint

qualification, from (a), (x∗, λ∗) is a K-T point of primal problem (P), where λ∗ is any limit
point of {λk}. From (24) and the linear independence of {∇gi (x∗)}i∈I (x∗), we further conclude
that the bounded infinite sequence {λk} has a unique limit point, i.e, λk → λ∗, k → ∞. 
�
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Next, we give the multiplier algorithm based on R AL M .

Algorithm 2 (Multiplier algorithm based on R AL M): Take parameters r ∈ (−∞, g∗).

Step 0. Select initial points x0 ∈ R
n , λ0 ≥ 0, and c0 > 0. Let k := 0.

Step 1. Compute

λk+1
i = R′

s(ck gi (x
k), λk

i ), 1 ≤ i ≤ m,

ck+1 ≥ (k + 1)max

{
1,

m∑

i=1

R(rck+1, λ
k+1
i )

}
, (25)

where R′
s is the derivative of R(s, t) with respect to its first variable s.

Step 2. Find an xk+1 ∈ S∗
R(λ

k+1, ck+1).
Step 3. Set k := k + 1 and go to Step 1.

Note from (25) in Step 1 that the condition given in (15) is satisfied. Therefore, a satisfaction
of Theorems 3 and 4 guarantees the global convergence of Algorithm 2, as stated in the
following theorem.

Theorem 7 Suppose that Assumptions 1 and 2 are satisfied, then the sequence of the iteration
points, {xk}, generated by Algorithm 2 has the following properties:

(a) If {xk} admits a limit point x∗, then x∗ ∈ X∗;
(b) limk→∞ f (xk) = β f (0) if and only if β f (α) is lower semi-continous at α = 0.

Similar to the proof of Theorem 6, we can get the following theorem.

Theorem 8 Suppose that Assumptions 1 and 2 are satisfied. Then, the sequence of iteration
points, {xk}, generated by Algorithm 2 satisfies the following properties.

(a) If limk→∞ xk = x∗, and the M-F constraint qualification is satisfied at x∗, then {λk} is
bounded and any limit point of {λk}, λ∗, is such that (x∗, λ∗) is a K-T point.

(b) If limk→∞ xk = x∗, and the linear independence qualification constraint holds at x∗,
then

lim
k→∞ λk = λ∗

and (x∗, λ∗) is a K-T point.

Remark 1 The global convergence properties of the augmented Lagrangian multiplier al-
gorithms in [2,9,18,26] all require the assumption that the multiplier sequence is bounded,
while our Algorithms 1–2 remove this restrictive condition. Theorems 5 and 7 show that
any limit point of {xk} is the optimal solution of the primal problem without a necessary
satisfaction of the boundedness condition of the multiplier sequence.

Remark 2 Rockafellar [26] showed that if the boundedness of the multiplier sequence is not
assumed, then the essential quadratic augmented Lagrangian method may be divergent, that
is, the sequence {xk} may not have a limit point. Theorems 5 and 7 show that if {xk} has no
limit point, then the sequence of the objective value is convergent to the optimal value if and
only if the perturbation function is lower semi-continuous at zero.
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Table 1 Solution process by PALM with essentially quadratic augmented Lagrangian function

k ck λk xk f (xk )

1 10 (1, 1, 1) (0.9765,−1.0720, 1.1080) −7.9545

2 10 (1, 1, 2) (0.9729,−1.0445, 1.0931) −7.6604

3 1000 (10, 10, 10) (1.0028,−0.9978, 0.9930) −6.9615

4 1000 (20, 20, 20) (1.0067,−0.9946, 0.9836) −6.9088

Table 2 Solution process by the multiplier algorithm based on PALM with essentially quadratic augmented
Lagrangian function

k ck λk xk f (xk )

1 10 (1, 1, 1) (0.9765,−1.0720, 1.1080) −7.9545

2 100 (2.2181, 0, 3.1461) (1.0004,−1.0006, 0.9993) −7.0018

3 100 (1.9993, 0, 3.3294) (1.0003,−1.0000, 0.9997) −7.0000

4 100 (2.0001, 0, 3.3298) (1.0005,−1.0000, 0.9995) −7.0000

Example 7 We consider the following example problem in [34],

min 5x1x2x3 − 1

2
x2

1 + 10(x1 − 1)2 − 2x2x3 − x3 − 3

2
x2

2 − x2
3

s.t.− x2
1 − x2

3 − x1 − 2x2 − x3 + 2 ≥ 0

x1 + 3

4
≥ 0

(x1 − x3)
2 + x3

2 − 0.1x1 + 0.05x2
1 + 1.05 ≥ 0.

It can be verified that the optimal solution of this example is x∗ = (1,−1, 1). Adopting the
essentially quadratic augmented Lagrangian function L P2(x, λ, c)with P2(s, t) = min

τ≥s
{tτ +

φ2(τ )} in algorithm P AL M generates the solution sequence in Table 1, where initial point
x0 = (0, 0, 0) is chosen. Adopting the multiplier algorithm based on PALM, with essentially
quadratic augmented Lagrangian function discussed in Sect. 4, yields the solution process
given in Table 2, where initial point x0 = (0, 0, 0) is chosen. The optimal multiplier of this
example is λ∗ = (2, 0, 10

3 ).

5 Augmented Lagrangian algorithm based on LV

The augmented Lagrangian algorithm associated with LV is similar to Algorithm 1 except
for the ways of choosing initial points and the penalty parameter ck .

Assumption 3 The relaxation problem of augmented Lagrangian LV is globally solvable.

Algorithm 3

Step 0. Select initial points x0 ∈ R
n , λ0 > 0 and c0 > 0. Set k := 0.
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Step 1. Compute

λk+1
i = V ′

s (ck gi (x
k), λk

i ), 1 ≤ i ≤ m,

ck+1 ≥ (k + 1)max

{
1,

m∑

i=1

|r(λk+1
i )|

}
, (26)

where V ′
s is the derivative of V (s, t) with respect to its first variable s.

Step 2. Find an xk+1 ∈ S∗
V (λ

k+1, ck+1).
Step 3. Set k := k + 1 and go to Step 1.

Theorem 9 Suppose that {xk} is the iteration sequence generated by Algorithm 3. If

lim
k→∞ xk = x∗, (27)

then x∗ ∈ X∗.

Proof Let x̄ ∈ G(0). From xk ∈ S∗
V (λ

k, ck) and (H ′′
1 ), we get

f (xk) = LV (x
k, λk, ck)− 1

ck

m∑

i=1

V (ck gi (x
k), λk

i )

≤ LV (x̄, λ
k, ck)− 1

ck

m∑

i=1

V (ck gi (x
k), λk

i )

≤ f (x̄)− 1

ck

m∑

i=1

V (ck gi (x
k), λk

i ). (28)

We claim that x∗ ∈ G(0). If a < +∞, it is easy to get x∗ ∈ G(0). Now let a = +∞. If
x∗ /∈ G(0), there exists index i0 such that gi0(x

∗) > 0. From (27), there exist ε0 > 0 and k0

such that

gi0(x
k) ≥ ε0, (29)

when k ≥ k0. From the convexity of V (·, t) and (H ′′
1 ), we get

λk
i0

ck gi0(x
k) ≤ V (ck gi0(x

k), λk
i0
)

= V (ck gi0(x
k), λk

i0
)− V (0, λk

i0
)

≤ V ′
s (ck gi0(x

k), λk
i0
) · ck gi0(x

k).

From the above inequalities, (29) and (26), we get

λk
i0

≤ V ′
s (ck gi0(x

k), λk
i0
) = λk+1

i0
, (30)

when k ≥ k0. Due to the positive initial multiplier λ0 and (H ′′
4 ), from Step 1, we get that

λk > 0 for all k. From (30), we also have λk
i0

≥ λ
k0
i0
> 0 for all k ≥ k0. Therefore,

{λk
i0
}k≥k0 ⊂ [λk0

i0
,+∞), i.e. {xk}k≥k0 is in a closed set. From (H ′′

3 ), we get

V (ckε0, λ
k
i0
)

ck
→ +∞, (k → ∞). (31)
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From the last inequality of (28), combining (H ′′
1 ), (H

′′
2 ) and (29) gives the following for

k ≥ k0,

f (xk) = f (x̄)− 1

ck
V (ck gi0(x

k), λk
i0
)− 1

ck

∑

i 
=i0

V (ck gi (x
k), λk

i )

≤ f (x̄)− 1

ck
V (ckε0, λ

k
i0
)− 1

ck

∑

i 
=i0

r(λk
i )

≤ f (x̄)− 1

ck
V (ckε0, λ

k
i0
)+ 1

ck

m∑

i=1

|r(λk
i ).

Taking k → ∞ in the above inequality, we get a contradiction from (27), (31) and Step 1.
Thus, x∗ ∈ G(0). From (H ′′

2 ) and the last inequality of (28), we get

f (xk) ≤ f (x̄)+ 1

ck

m∑

i=1

|r(λk
i )|.

Taking k → ∞ in the above inequality, we get the following from Step 1,

f (x∗) ≤ f (x̄).

From the arbitrariness of x̄ ∈ G(0), we get x∗ ∈ X∗. 
�
As the same as in Algorithms 1 and 2, the convergence result for Algorithm 3 does not

need the condition of the boundedness of {λk}.
Similar to the proof of Theorem 6, we have the following theorem.

Theorem 10 Suppose that {xk} is the iteration sequence generated by Algorithm 3.

(a) If limk→∞ xk = x∗ and the M-F constraint qualification is satisfied at x∗, then {λk} is
bounded and any limit point of {λk}, λ∗, is such that (x∗, λ∗) is a K-T point.

(b) If limk→∞ xk = x∗ and the linear independence constraint qualification holds at x∗,
then

lim
k→∞ λ

k = λ∗

and (x∗, λ∗) is a K-T point.

6 Existence theorems of global saddle point of L P , L R and LV

In this section, we generalize the existence theorems for global saddle point in [32] and [26].
More specifically, we prove the existence of a global saddle point for L P and L R under
the framework of P AL M or R AL M . Using a similar method, we prove the existence of a
global saddle point for LV with an additional condition. Finally, for six important augmented
Lagrangian functions classified in L P , L R and LV , respectively, we discuss the second-order
sufficient condition which ensures the existence of their local saddle points.

We first give the definition of a saddle point of L P .

Definition 5 (x∗, λ∗) is said to be a global saddle point of L P for c0 > 0, if for all x ∈ R
n and

all λ ≥ 0,

L P (x
∗, λ, c0) ≤ L P (x

∗, λ∗, c0) ≤ L P (x, λ
∗, c0). (32)
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If x∗ ∈ �c0(a) and there exists a neighborhood N (x∗, δ) of x∗ such that for all x ∈ N (x∗, δ)
and all λ ≥ 0, (32) is satisfied, then (x∗, λ∗) is said to be a local saddle point of L P for c0 > 0.
(x∗, λ∗) is said to be a local saddle point of L P for c ≥ c0, if there exists a neighborhood
N (x∗, δ) of x∗, which is independent of c, such that for all x ∈ N (x∗, δ), all λ ≥ 0, and all
c ≥ c0, (32) is satisfied.

We can define a global (local) saddle point of L R and LV in similar ways.
Applying the property (H1) of P(s, t) that P(s, t) → +∞ (t → +∞) for s > 0, we can

get the following theorem without a detailed proof, as it is similar to a one in [32].

Theorem 11 Suppose that (x∗, λ∗) is a global (local) saddle point of L P for c0, then x∗ is
a global (local) optimal solution of the primal problem (P).

Results similar to Theorem 11 can be also obtained for L R and LV . Theorem 11 shows that
the saddle point condition of L P is sufficient for the optimal solution of the primal problem,
which is the same as in the classical Lagrangian. It is well recognized that saddle point often
does not exist for the classical Lagrangian.

Next, we will present an existence theorem for the global saddle point of L P .

Theorem 12 Suppose that Assumption 1 is satisfied. Assume that the following assumptions
also hold.

(a) There exists λ∗ ≥ 0 such that for any x∗ ∈ X∗, there exists c∗ > 0 such that for any
c ≥ c∗, (x∗, λ∗) is a local saddle point of L P .

(b) There exists α0 > 0 such that G(α0) ∩ F(α0) is bounded.

Then, for any x∗ ∈ X∗, there exists c∗ > 0 such that for all c ≥ c∗, (x∗, λ∗) is the global
saddle point of L P .

Proof Let x∗ ∈ X∗ be arbitrary. From assumption (a) of the theorem, there exist a neigh-
borhood N (x∗, δ) of x∗ and c∗ > 0 such that for all x ∈ N (x∗, δ), all λ ≥ 0 and all
c ≥ c∗,

L P (x
∗, λ, c) ≤ L P (x

∗, λ∗, c) ≤ L P (x, λ
∗, c).

From the first inequality given above and (H1), for c ≥ c∗, we have

P(cgi (x
∗), λ∗) = 0, (1 ≤ i ≤ m).

Then,

L P (x
∗, λ∗, c) = f (x∗), ∀ c ≥ c∗.

Due to the above equality, we now only need to prove that there exists c∗ ≥ c∗ such that for
any c ≥ c∗,

f (x∗) ≤ L P (x, λ
∗, c), ∀ x ∈ R

n .

Suppose on the contrary, there exist ck → ∞(k → ∞) and εk → 0+ (k → ∞) such that

inf
x∈Rn

L P (x, λ
∗, ck)+ εk < f (x∗). (33)

Choose an εk− optimal solution zk ∈ S∗
p(λ

∗, ck, εk). From (33), for any k, we have

L P (z
k, λ∗, ck) < f (x∗). (34)
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On the other hand, for α0 > 0, the following holds true from Theorem 1,

zk ∈ S∗
p(λ

∗, ck, εk) ⊆ G(α0) ∩ F(α0),

when k is sufficiently large. From assumption (b) of the theorem, we know that {zk} is
bounded and it has an accumulation point x∗. Without loss of generality, we set

lim
k→∞ zk = z∗. (35)

From Theorem 1, z∗ ∈ X∗. Then from assumption (a) of the theorem, there exist c∗∗ > 0 and
a neighborhood N (z∗, δ∗) of z∗ such that for all x ∈ N (z∗, δ∗), all λ ≥ 0, and all c ≥ c∗∗,
we have

L P (z
∗, λ, c) ≤ L P (z

∗, λ∗, c) ≤ L P (x, λ
∗, c). (36)

Adopting the same approach as above, the first inequality of (36) and f (x∗) = f (z∗) imply
that for c ≥ c∗∗,

L P (z
∗, λ∗, c) = f (x∗). (37)

From (35), when k is large enough, zk ∈ N (z∗, δ∗). Taking x = zk in (36), (37) yields

f (x∗) ≤ L P (z
k, λ∗, c), c ≥ c∗∗,

when k is sufficiently large, which is a contradiction of (34). 
�
Note that P(s, t) and R(s, t) are convex with respect to s in all examples given in Sect. 2.

The following theorem shows that under the assumption that P(s, t) is convex in s, Theorem
12 can be simplified.

Let P(s, t) be convex with respect to s on Ra ×R+. Using the property of convex function,
we note that for some c0 > 0, x /∈ �c0(a) implies x /∈ �c(a) for c ≥ c0. Then

1

c

m∑

i=1

P(cgi (x), λ
∗
i )

is increasing with respect to c for any x ∈ �c(a), which implies L P (x, λ∗, c) is increasing
with respect to c. Thus, from the inequality of the saddle point and (H1), we get the following
Lemma.

Lemma 4 Let P(s, t) be convex with respect to s on Ra × R+. If (x∗, λ∗) is a global (local)
saddle point of L P for some c0 > 0, then (x∗, λ∗) is a global (local) saddle point for any
c ≥ c0.

Thus, under the assumption that P(s, t) is convex with respect to s, Lemma 4 and Theorem
12 yield the following Theorem.

Theorem 13 Suppose that Assumption 1 is satisfied. Assume also that the following hold.

(a) There exists λ∗ ≥ 0 such that for any x∗ ∈ X∗, (x∗, λ∗) is a local saddle point of L P for
some c∗ > 0;

(b) There exists α0 > 0 such that G(α0) ∩ F(α0) is bounded.

Then, for any x∗ ∈ X∗, there exists c∗ > 0 such that for all c ≥ c∗, (x∗, λ∗) is the global
saddle point of L P .
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We can prove the existence of a global saddle point for L R via R AL M in a manner similar
to the way in proving Theorems 12–13.

Theorem 14 Supposed that Assumptions 1 and 2 are satisfied. Assume also that the following
hold.

(a) There exists λ∗ ≥ 0 such that for any x∗ ∈ X∗, there exists c∗ > 0 such that for all
c ≥ c∗, (x∗, λ∗) is a local saddle point of L R.

(b) There exists α0 > 0 such that G(α0) ∩ F(α0) is bounded.

Then for any x∗ ∈ X∗, there exists c∗ > 0 such that for all c ≥ c∗, (x∗, λ∗) is a global saddle
point of L R.

It is obvious that when R(s, t) is convex with respect to s, Lemma 4 is satisfied. Thus, we
get the following simplified result under an assumption that R(s, t) is convex with respect
to s.

Theorem 15 Suppose that Assumptions 1 and 2 are satisfied. Assume also that the following
hold.

(a) There exists λ∗ ≥ 0 such that for any x∗ ∈ X∗, (x∗, λ∗) is a local saddle point of L R for
some c∗ > 0.

(b) There exists α0 > 0 such that G(α0) ∩ F(α0) is bounded.

Then for any x∗ ∈ X∗ there exists c∗ > 0 such that for all c ≥ c∗, (x∗, λ∗) is a global saddle
point of L R.

In the following, we consider the global saddle point of LV . We generalize the separation
condition in [32]. Under the generalized separation condition, we prove the existence of a
global saddle point of LV using an approach similar to the proof of Theorem 12.

Define the following for a given λ∗ ≥ 0,

J ∗ = {1 ≤ i ≤ m|λ∗
i > 0},

and

G J∗(α) = {x ∈ R
n |gi (x) ≤ α, i ∈ J ∗}, (α > 0).

Similar to the proofs of Lemma 2 and Lemma 3, we can obtain the following Lemma 5
by utilizing the property of V (s, t).

Lemma 5 Suppose that Assumption 1 is satisfied and ck → +∞ (k → ∞). Then for any
ε > 0, there exists kε such that

{x ∈ R
n |LV (x, λ

∗, ck) ≤ β f (0)} ⊆ G J∗(ε) ∩ F(ε)

when k ≥ kε .

Theorem 16 Suppose that Assumption 1 is satisfied. Assume also that the following hold.

(a) There exists λ∗ ≥ 0 such that for any x∗ ∈ X∗, (x∗, λ∗) is a local saddle point of LV for
some c∗ > 0.

(b) There exists α0 > 0 such that G J∗(α0) ∩ F(α0) is bounded.
(c) G J∗(0) ∩ F(0) = X∗.

Then for any x∗ ∈ X∗ there exist c∗ > 0 such that for all c ≥ c∗, (x∗, λ∗) is a global saddle
point of LV .
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Proof Let x∗ ∈ X∗ be arbitrary. (H ′′
1 ) implies that V (s, t) is convex with respect s. Then

Lemma 4 is also satisfied for LV . Assumption (a) then implies that there exist λ∗ ≥ 0, a
neighborhood N (x∗, δ) of x∗ and c∗ > 0 such that

LV (x
∗, λ, c) ≤ LV (x

∗, λ∗, c) ≤ LV (x, λ
∗, c),

for all x ∈ N (x∗, δ), all λ ≥ 0 and all c ≥ c∗. From the first inequality above and (H ′′
1 ), we

have

LV (x
∗, λ∗, c) = f (x∗),

for c ≥ c∗. By the above equality , we only need to prove that there exists c∗ > 0 such that
for any x ∈ R

n ,

f (x∗) ≤ LV (x, λ
∗, c∗). (38)

we consider the following two cases.

Case 1. J ∗ = ∅. Then λ∗
i = 0 (1 ≤ i ≤ m) and G J∗(0) = R

n . From assumption (c) of the
theorem, F(0) = X∗, that is , x∗ ∈ X∗ is the optimal solution of problem min

x∈Rn
f (x).

On the other hand, (H ′′
1 ) implies that

V (cgi (x), 0) ≥ 0,

for c > 0 and x ∈ �c(a). Therefore

f (x∗) ≤ f (x) ≤ LV (x, 0, c)

for x ∈ R
n and c > 0. We can conclude that (38) is satisfied.

Case 2. J ∗ 
= ∅. Suppose on the contrary that (38) is unsatisfied. Then, there exist ck →
+∞ (k → ∞) and zk ∈ �ck (a) such that

LV (z
k, λ∗, ck) < f (x∗). (39)

Let ε ∈ (0, α0] be arbitrary. From (39) and Lemma 5, when k is large enough, we
have

zk ∈ {x ∈ R
n |LV (x, λ

∗, ck) ≤ f (x∗)} ⊆ G J∗(ε) ∩ F(ε). (40)

From (40) and assumption (b), {zk} is bounded and then must have an accumulation
point z∗. Without loss of generality, we set

lim
k→∞ zk = z∗. (41)

Since f and gi (1 ≤ i ≤ m) are continuous, G J∗(ε) and F(ε) are bounded sets.
Therefore (41) implies that

z∗ ∈ G J∗(ε) ∩ F(ε).

By assumption (c) of the theorem and the arbitrariness of ε > 0, we obtain

z∗ ∈ G J∗(0) ∩ F(0) = X∗. (42)

Thus, similar to the proof of the second half of Theorem 12, (42) and Assumption (a) will
lead to a contradiction of (39). 
�
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The existence theorems of a global saddle point derived above are achieved under the
existence condition of local saddle points. Thus, it is indispensable to discuss some sufficiency
conditions for the existence of a local saddle point. Without doubt, such sufficiency conditions
depend on specific structures of different situations under investigation. At this stage, we are
unable to provide a unified sufficiency condition applied for all the three unified formulations
as a whole. Instead, we will derive the second-order sufficiency conditions for the six specific
examples discussed in Sect. 2, respectively.

Second-order sufficiency condition (A): Let x∗ ∈ G(0) and λ∗ ≥ 0. Assume that
(x∗, λ∗) is a K-T point of problem (P) and the Hessian matrix of the conventional Lagrangian

∇2
xx L(x∗, λ∗) = ∇2 f (x∗)+

∑

i∈J (x∗)
λ∗∇2gi (x

∗)

is positive definite on the cone

K̃ (x∗)={d ∈ R
n, d 
= 0|∇gi (x

∗)T d = 0, i ∈ J (x∗); ∇gi (x
∗)T d ≤ 0, i ∈ I (x∗)\ J (x∗)}.

Second-order sufficiency condition (B): Let x∗ ∈ G(0) and λ∗ ≥ 0. Assume that
(x∗, λ∗) is a K-T point of problem (P) and the Hessian matrix of the conventional Lagrangian,
∇2

xx L(x∗, λ∗) is positive definite on the cone

K (x∗) = {d ∈ R
n, d 
= 0|∇gi (x

∗)T d = 0, i ∈ J (x∗)}.
Condition (A) is weaker than condition (B). For L Pi (i = 3, 4), L R1 and LV1 , condition

(B) is proved to be the sufficiency condition for the existence of a local saddle point in [32].
We prove in this paper that condition (A) is a sufficiency condition for the existence of a local
saddle point of Example L Pi (i = 1, 2).

Theorem 17 Let x∗ be a local optimal solution to problem (P). Assume that second-order
sufficiency condition (A) is satisfied at x∗. Then there exists c∗ > 0 such that for all c ≥ c∗,
(x∗, λ∗) is a local saddle point of L Pi (i = 1, 2).

Proof Except for some minor differences, the proof is similar to a one in [32]. 
�
In the following, we consider an example problem in which the global optimal solution

is not unique.

Example 8

min f (x) = ex2
2 −x2

1 ,

s.t. g1(x) = x2
1 − 1 ≤ 0,

g2(x) = e−x2 − 1 ≤ 0.

This example clearly is a nonconvex optimization problem. Note that Assumptions 1 and 2
are satisfied by f (x) and gi (x) (i = 1, 2), respectively, and there exist two global optimal
solutions:

x∗,1 = (1, 0), x∗,2 = (−1, 0).

It is easy to find out that β f (0) = e−1. For any α > 0, both the sets

G(α) = {x ∈ R
2|x2

1 − 1 ≤ α, e−x2 − 1 ≤ α}
and

F(α) = {x ∈ R
2|ex2

2−x2
1 ≤ e−1 + α}
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are unbounded. However, the set G(α) ∩ F(α) is bounded. Set

λ∗
1 = e−1, λ∗

2 = 0.

We can verify the following for (x∗,i , λ∗) (i = 1, 2),

∇x L(x∗,i , λ∗) = ∇ f (x∗,i )+
2∑

i=1

λ∗
i ∇gi (x

∗,i )

=
(−2x∗,i

1 e−1

0

)
+ e−1

(
2x∗,i

1
0.

)

= 0

Note that the Hessian matrix

∇2
xx L(x∗,i , λ∗) = ∇2 f (x∗,i )+

2∑

i=1

λ∗
i ∇2gi (x

∗,i )

=
(

2e−1 0
0 2e−1

)
+ e−1

(
2 0
0 0

)

=
(

4e−1 0
0 2e−1

)

is positive definite. Thus, the second sufficient condition (B) is satisfied at (x∗,i , λ∗) (i =
1, 2). By Theorem 17 and the corresponding theorems in [32], (x∗,i , λ∗) (i = 1, 2) are local
saddle points for augmented Lagrangian L Pj ( j = 1, 2, 3, 4), L R1 and LV1 . Notice that the
separation condition is also satisfied, that is,

G J∗(0) ∩ F(0) = {x ∈ R
2|x2

1 − 1 ≤ 0} ∩ {x ∈ R
2|ex2

2−x2
1 ≤ e−1} = X∗

and for any α > 0, G J∗(α) ∩ F(α) is bounded. Therefore, from Theorem 13, 15 and 16,
(x∗,i , λ∗), i = 1, 2, are global saddle points for all the six classes of augmented Lagrangian
functions.

Remark 3 In this section, we not only generalize the existence theorem of a global saddle
point in [32], but also extend in Theorem 13 the corresponding result in [26] (see Theorem
6 and Corollary 6.1 in [26]). In fact, the assumption in [26] that x∗ is the unique optimal
solution to (P) in the strong sense implies a satisfaction of the Assumption (b) in Theorem
13, i.e., there exists α0 > 0 such that G(α0) ∩ F(α0) is bounded.

7 Conclusions

The convergence results for augmented Lagrangian presented in this paper offer new insights
for duality theory, expand the domain for the existence of a global saddle point and facilitate
the development of novel schemes for multiplier methods in global optimization. The imple-
mentation issues will be the subject of our future study, aiming for certain special classes of
global optimization problems. The key to success is on identification of efficient global op-
timization algorithms for unconstrained Lagrangian relaxation problems with some special
structures.
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